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Active ion-irradiation suppressed the critical 
current of REBCO coated conductors

Beam ON
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Damage 
accumulates
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As irradiation progresses, damage accumulates 
and the critical current further decreases
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Beam OFF

The critical current measured during irradiation 
is lower than immediately after
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Outline
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• MIT’s cryogenic ion-irradiation facility

• Key insights from Ic measurements during irradiation
• Turning up the heat (︎↑beam current at fixed energy)

• Increasing displacements/watt (︎↑ beam energy at fixed power)

• Sensitivity analysis with finite-element modeling
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MIT cryogenic target performs transport 
measurements during ion-irradiation

11

δT ± 0.1 K, δV ± 0.1 µV



Uniform beam profiles maximize reproducibility

X and Y steers and 
quadrupole (upstream)

for shaping

3 mm

5 mm

Ion beam

12



Linear accelerator knobs

• Increase the beam current
• Increases the beam power

• Increases damage-rate

• Increase the beam energy
• Increases beam power

• Lowers damage-rate

• Increases implantation depth

• Increase ion species Z
• Increases nuclear stopping power, 
compared to electronic stopping
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The ion-beam can suppress Ic without 
causing permanent damage
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proton beam

2400 keV 
Low damage rate
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2400 keV proton-beam Initial temperature: 77.3 K

At fixed beam energy, Ic suppression 
is proportional to beam current
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2400 keV proton-beam Initial temperature: 77.3 K
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At fixed beam energy, Ic suppression 
is proportional to beam current



Beam heating is a plausible explanation 
for the beam-on suppression of Ic
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Sensor Temperature [K]

2400 keV H+ ion-beam



A very low energy beam can heat the sample 
without damaging the REBCO layer
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150 keV 
No damage
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• No damage: 150 keV protons stop 

in the silver layer

• High damage rate: 800 keV protons
stop just outside the REBCO layer

• Moderate damage rate: 1200 keV protons
stop further into the substrate

• Low damage rate: 2400 keV protons stop 
furthest into the substrate.

proton beam
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800 keV 
High damage rate
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• No damage: 150 keV protons stop 

in the silver layer

• High damage rate: 800 keV protons
stop just outside the REBCO layer

• Moderate damage rate: 1200 keV protons
stop further into the substrate

• Low damage rate: 2400 keV protons stop 
furthest into the substrate.

proton beam

Increasing beam energy at fixed beam power, 
decreases the damage rate in the REBCO layer 
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1200 keV 
Moderate damage rate
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• No damage: 150 keV protons stop 

in the silver layer

• High damage rate: 800 keV protons
stop just outside the REBCO layer

• Moderate damage rate: 1200 keV protons
stop further into the substrate

• Low damage rate: 2400 keV protons stop 
furthest into the substrate.

proton beam

Increasing beam energy at fixed beam power, 
decreases the damage rate in the REBCO layer 
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proton beam

2400 keV 
Low damage rate

• No damage: 150 keV protons stop 
in the silver layer

• High damage rate: 800 keV protons
stop just outside the REBCO layer

• Moderate damage rate: 1200 keV protons
stop further into the substrate

• Low damage rate: 2400 keV protons stop 
furthest into the substrate.

Increasing beam energy at fixed beam power, 
decreases the damage rate in the REBCO layer 
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proton beam

2400 keV 
Low damage rate

• No damage: 150 keV protons stop 
in the silver layer

• High damage rate: 800 keV protons
stop just outside the REBCO layer

• Moderate damage rate: 1200 keV protons
stop further into the substrate

• Low damage rate: 2400 keV protons stop 
furthest into the substrate.

Increasing beam energy at fixed beam power, 
decreases the damage rate in the REBCO layer 



We can produce more displacements/watt 
in YBCO by varying the beam energy
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proton beam

150 keV 
240 nA

0x

800 keV 
45 nA

10x

2400 keV
15 nA

1x

1200 keV 
30 nA 4x



At fixed power, Jc suppression is similar for 
different beam energies (︎mdpa) 
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Using Ic as a thermometer to measure 
the true irradiation temperature 
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ΔTsensor ≈ 3 K 

ΔTREBCO ≈ 8 K 
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Outline
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• MIT’s cryogenic ion-irradiation facility

• Key insights from Ic measurements during irradiation
• Turning up the heat (︎↑beam current at fixed energy)

• Increasing displacements/watt (︎↑ beam energy at fixed power)

• Sensitivity analysis with finite-element modeling



Finite-element model setup

Faraday tape (3 cm long)

d = 3.9 ± .5 mm

Cryogenic grease
k = 0.01 W/m-K
t = 20 ± 10 µm
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Sensor (+In + clamp)

T0

T0 T0

T0



Heat source for different beam energies
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3-mmm FWHM Beam heating profile 
from SRIM (IONIZ.TXT + PHONONS.TXT)

150 keV 800 keV



The absolute temperature rise is sensitive to thermal 
coupling and the position of the temperature sensor
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We get reasonable between model and 
experiments when

• The sensor is close enough to the irradiated area 
to detect a temperature rise.

• We determine coupling of sensor to target-
holder (here it’s a free-parameter) .

• Modeling the bridge is not necessary (2D vs 3D).

• Thermal coupling of tape (N-Apiezon grease) to 
target-holder is key to reproduce temperatures.

T (Ic = Ic*)

TSENSOR



Key findings concerning the 
beam-on effect

• Ic is suppressed during irradiation but 
there is no permanent damage

• Ions do not need to interact directly 
with the REBCO layer to suppress Ic

• The beam-on effect is accompanied 
by a temperature rise

• Ic vs T and Ic vs IBeam have the same 
functional dependence

• Thermal coupling strongly influences 
the absolute temperature rise
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Backup slides 
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…in fact, any claim should be 
supported by good statistics

Can temperature alone explain the 
suppression of Ic during irradiation?

150 keV800 keV
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FE 800 and 2400 keV
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At fixed energy, the temperature rise 
is proportional to beam current
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1200 keV proton-beam Initial temperature: 77.3 K



Beam current is 200 nA?

46



Temperature stability during Ic 
measurements with a 1200 keV beam

ΔT = 0.3 𝐾
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Temperature stability during Ic 
measurements with a 300 keV beam

ΔT = 0.1 𝐾
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The bridged-tape is mounted directly 
on copper with a thin layer of 
cryogenic grease (N-Apiezon).

Temperature sensor T3 is pressed 
down against the surface of the tape, 
in the irradiated area.
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For this test, the sensor was occluded 
from the beam by copper tape. The 
tape touches the samples holder, but it 
doesn’t contact the sensor directly.

Copper tape

Spring-loaded clamp

Temperature sensor
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Pressure 5e-6 torr

Cryomech AL230 Cold-head 
  Base temperature  15 K 

  Cooling power  25W at 20 K

Sapphire insulator
650- m thick

 old-coated glass

beam-collimator 

1 8-in beam aperture

Radiation shield
1 4-in beam aperture

316 Stainless-steel

mounting screws

Sensor-wires and current 

leads feedthrough

 ylon standoffs

C -S

Re-engineered cryogenic 
target maximizes heat 
removal

B
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 s
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t
I+I-

V - V+

Picoammeter

Radiation ✓
Temperature sensor 

on terminal blocks

Convection ✓

Joule ✓

Conduction ✓
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Can we separate beam-heating from atomic-
displacements?

1200 keV protons heat 
and damage the REBCO

Silver YBCO Substrate

300 keV protons only heat 
the REBCO layer

Silver YBCO Substrate
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Case 1: 1200 keV protons heat and damage the REBCO

Curve A is the reference before irradiation
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Case 1: 1200 keV protons heat and damage the REBCO

Curve B is measured during irradiation (︎stable 
temperature)
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Case 1: 1200 keV protons heat and damage the REBCO

Curve C is measured after irradiation



CBA

D
Measured at the temperature which matches
the beam-OFF and beam-ON curves

B

D

A

C

Tirr = 25 K ➝ Teq = 62 K ➝ ∆T = 37 K
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Case 1: 1200 keV protons heat and damage the REBCO

Curve D is measured at the matching temperature
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Case 3: 300 keV protons only heat the REBCO

Curve A is the reference before irradiation
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Case 2: 300 keV protons only heat the REBCO

Curve B is measured during irradiation (︎stable 
temperature)
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Case 2: 300 keV protons only heat the REBCO

Curve C is measured after irradiation
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AB

C

D
Measured at the temperature which matches
the beam-OFF and beam-ON curves

D
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Case 2: 300 keV protons only heat the REBCO

Curve D is measured at the matching temperature (︎35 
K!)

Tirr = 25 K ➝ Teq = 35 K ➝ ∆T = 10 K
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Beam OFF
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