

Nuclear Science and Engineering

science : systems : society

Key insights from experiments on the beam on suppression of $\rm I_{\rm c}$ during ion-irradiation.

Alexis Devitre, D.X. Fischer, N. Riva, K.B. Woller, Z.L Fisher, M.P. Short, D.G. Whyte, Z.S. Hartwig.

Active ion-irradiation suppressed the critical current of REBCO coated conductors

The critical current measured during irradiation is lower than immediately after

Outline

- MIT's cryogenic ion-irradiation facility
- \bullet Key insights from $I_{\rm c}$ measurements during irradiation
 - Turning up the heat (*theam current at fixed energy*)
 - Increasing displacements/watt († beam energy at fixed power)
- Sensitivity analysis with finite-element modeling

Outline

• MIT's cryogenic ion-irradiation facility

Key insights from I_c measurements during irradiation
Turning up the heat (*î*beam current at fixed energy)
Increasing displacements/watt (*î* beam energy at fixed power)

• Sensitivity analysis with finite-element modeling

MIT cryogenic target performs transport measurements during ion-irradiation

Uniform beam profiles maximize reproducibility

Linear accelerator knobs

ange

С С

t

e L

Increase the beam current

- Increases the beam power
- Increases damage-rate

Increase the beam energy

- Increases beam power
- Lowers damage-rate
- Increases implantation depth

Increase ion species Z

 Increases nuclear stopping power, compared to electronic stopping

Outline

• MIT's cryogenic ion-irradiation facility

- \bullet Key insights from $I_{\rm c}$ measurements during irradiation
 - Turning up the heat (*theam current at fixed energy*)
 - Increasing displacements/watt († beam energy at fixed power)

• Sensitivity analysis with finite-element modeling

The ion-beam can **suppress** I_c **without causing permanent damage**

The ion-beam can **suppress** I_c **without causing permanent damage**

Beam heating is a plausible explanation for the beam-on suppression of $\rm I_{\rm c}$

A very low energy beam can heat the sample without damaging the REBCO layer

- **No damage:** 150 keV protons stop in the silver layer
- **High damage rate:** 800 keV protons stop just outside the REBCO layer

- **No damage:** 150 keV protons stop in the silver layer
- High damage rate: 800 keV protons stop just outside the REBCO layer
- Moderate damage rate: 1200 keV protons stop further into the substrate

- **No damage:** 150 keV protons stop in the silver layer
- **High damage rate:** 800 keV protons stop just outside the REBCO layer
- Moderate damage rate: 1200 keV protons stop further into the substrate
- Low damage rate: 2400 keV protons stop furthest into the substrate.

- **No damage:** 150 keV protons stop in the silver layer
- **High damage rate:** 800 keV protons stop just outside the REBCO layer
- Moderate damage rate: 1200 keV protons stop further into the substrate
- Low damage rate: 2400 keV protons stop furthest into the substrate.

We can produce **more displacements/watt in YBCO** by varying the beam energy

Using ${\rm I}_{\rm c}$ as a thermometer to measure the true irradiation temperature

Outline

• MIT's cryogenic ion-irradiation facility

Key insights from I_c measurements during irradiation
Turning up the heat (*†*beam current at fixed energy)
Increasing displacements/watt (*†* beam energy at fixed power)

• Sensitivity analysis with finite-element modeling

Finite-element model setup

Heat source for different beam energies

3-mmm FWHM Beam heating profile from SRIM (IONIZ.TXT + PHONONS.TXT**)**

The absolute temperature rise is sensitive to thermal coupling and the position of the temperature sensor

We get reasonable between model and experiments when

- The sensor is close enough to the irradiated area to detect a temperature rise.
- We determine coupling of sensor to targetholder (here it's a *free-parameter*).
- Modeling the bridge is not necessary (2D vs 3D).
- Thermal coupling of tape (N-Apiezon grease) to target-holder is key to reproduce temperatures.

Key findings concerning the beam-on effect

- I_c is suppressed during irradiation but there is no permanent damage
- lons do not need to interact directly with the REBCO layer to suppress $\rm I_{\rm c}$
- The beam-on effect is accompanied by a temperature rise
- $I_c \mbox{ vs T} \mbox{ and } I_c \mbox{ vs I}_{Beam}$ have the same functional dependence
- Thermal coupling strongly influences the absolute temperature rise

Extraordinary claims require extraordinary evidence.

– Carl Sagan

Backup slides

...in fact, any claim should be supported by good statistics

Can temperature alone explain the suppression of I_c during irradiation?

Extraordinary claims require extraordinary evidence.

- Carl Sagan

FE 800 and 2400 keV

At fixed energy, the temperature rise is proportional to beam current

Beam current is 200 nA?

Temperature (K)

Temperature stability during Ic measurements with a 1200 keV beam

Temperature stability during Ic measurements with a 300 keV beam

The bridged-tape is mounted directly on copper with a thin layer of cryogenic grease (N-Apiezon).

Temperature sensor T3 is pressed down against the surface of the tape, in the irradiated area.

Copper tape

Spring-loaded clamp

Temperature sensor

For this test, the sensor was occluded from the beam by copper tape. The tape touches the samples holder, but it doesn't contact the sensor directly₅₀

Can we separate beam-heating from atomicdisplacements?

1200 keV protons heat and damage the REBCO

300 keV protons **only heat** the REBCO layer

Case 1: 1200 keV protons **heat** and **damage** the REBCO Curve A is the reference before irradiation

Case 1: 1200 keV protons **heat** and **damage** the REBCO Curve B is measured during irradiation (stable temperature)

Case 1: 1200 keV protons **heat** and **damage** the REBCO Curve C is measured after irradiation

Case 1: 1200 keV protons heat and damage the REBCO Curve D is measured at the matching temperature

Case 3: 300 keV protons **only heat** the REBCO Curve A is the reference before irradiation

Case 2: 300 keV protons **only heat** the REBCO Curve B is measured during irradiation (stable temperature)

Case 2: 300 keV protons **only heat** the REBCO Curve C is measured after irradiation

Case 2: 300 keV protons only heat the REBCO Curve D is measured at the matching temperature (35 K!)

