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Active ion-irradiation suppressed the crifical
current of REBCO coated conductors

50 nA proton-beam at 24 K
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As irradiation progresses, damage accumulates
and the critical current further decreases

50 nA proton-beam at 24 K
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As irradiation progresses, damage accumulates
and the critical current further decreases

50 nA proton-beam at 24 K

5
llliffe et al. SUST 2023 S
Devitre et al. ASC 2022 I
Y
41 @
r— ,.8
=> £
= 3] Damage ¢
) accumulates
(@)
©
X 21
O
=
l i
0

28 30 32 34 36 38
Current [A]



As irradiation progresses, damage accumulates
and the critical current further decreases

50 nA proton-beam at 24 K
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As irradiation progresses, damage accumulates
and the critical current further decreases

50 nA proton-beam at 24 K
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As irradiation progresses, damage accumulates
and the critical current further decreases

50 nA proton-beam at 24 K
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The critical current measured during irradiation
s lower than immediately after

50 nA proton-beam at 24 K
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Qutline
 MIT's cryogenic ion-irradiation facility

« Key insights from |. measurements during irradiation
 Turning up the heat (Tbeam current at fixed energy)
 Increasing displacements/watt (1 beam energy at fixed power)

« Sensitivity analysis with finite-element modeling



Outline

* MIT's cryogenic ion-irradiation facility



MIT cryogenic target performs transport
measurements during ion-irradiation

6T+0.1K, 6V +£0.1 uv

Beam-collimator
1/8-in beam aperture

Electrically insulating
standoffs

Radiation shield
1/4-in beam aperture

Sensor-wires and current
leads feedthrough

Electric insulator
650-um thick sapphire

f 0.1 x 2 mm bridge

3cm

Copper 101 Mounting screws

Stainless-steel

Silver Cold-head and heaters

* Base temperature: 15K

* Cooling power: 25W at 20 K

* Heating power: 440 W

* CX-CH: PID temperature sensor

Gold-coated glass
G-10resin

Spring-loaded
temperature sensor




Uniform beam profiles maximize reproducibility
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Linear accelerator knobs

Harder to change

* Increase the beam current

* Increases the beam power
* Increases damage-rate

 Increase the beam energy
* Increases beam power
« Lowers damage-rate
* Increases implantation depth

* Increase ion species Z

* Increases nuclear stopping power,

compared to electronic stopping



Outline

« Key insights from |. measurements during irradiation
 Turning up the heat (Tbeam current at fixed energy)
 Increasing displacements/watt (1 beam energy at fixed power)



The ion-beam can suppress |. without
causing permanent damage
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The ion-beam can suppress |. without
causing permanent damage
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At fixed beam energy, |. suppression
IS proportional o beam current

2400 keV proton-beam Initial temperature: 77.3 K
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At fixed beam energy, |. suppression
IS proportional o beam current

2400 keV proton-beam Initial temperature: 77.3 K
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At fixed beam energy, |. suppression
IS proportional o beam current

2400 keV proton-beam Initial temperature: 77.3 K
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At fixed beam energy, |. suppression
IS proportional o beam current

2400 keV proton-beam Initial temperature: 77.3 K
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At fixed beam energy, |. suppression
IS proportional o beam current

2400 keV proton-beam Initial temperature: 77.3 K
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Beam heating is a plausible explanation
for the beam-on suppression of |

Sensor Temperature [K]
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A very low energy beam can heat the sample
without damaging the REBCO layer

proton beam
—)

0.030

REBCO
Substrate

o o
o o
[ [
o Ln

0.0101| i 150 keV
: No damage

Damage rate [mdpa/s]

3z 10 15 20 25 30
Depth [um]



Increasing beam energy at fixed beam power,
decreases the damage rate in the REBCO layer

proton beam
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Increasing beam energy at fixed beam power,
decreases the damage rate in the REBCO layer

proton beam
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Increasing beam energy at fixed beam power,
decreases the damage rate in the REBCO layer
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High damage rate: 800 keV protons
stop just outside the REBCO layer

Moderate damage rate: 1200 keV protons
stop further into the substrate

Low damage rate: 2400 keV protons stop
furthest into the substrate.
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Increasing beam energy at fixed beam power,
decreases the damage rate in the REBCO layer
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furthest into the substrate.
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We can produce more displacements/watt
in YBCO by varying the beam energy

proton beam

0,030 - 0.014 FIXP =1V
o: O: I
<<: O: @
— @S 0.012
Y0025 i xid )
0 : - =
o 5 P> ® 0.010
o
150 keV ©
€ 0.020 200 keV & 10x
— 240 nA — 0.008
QL : 45 nA B
200157 | ©
o : 2400 keV o 0.006
V
o 0.010 1200 keV 15 nA € 0.004
E 30 nA 8 4x
(1] 0.002 1
S 0.005
0-000 5 10 - 15 20 25 30 oo 02 0 - 20 Ox
Depth in YBCO layer [um]

Depth [um] 28



At fixed power, Jc suppression is similar for
different beam energies (mdpa)
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At fixed power, Jc suppression is similar for
different beam energies (mdpa)
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At fixed power, Jc suppression is similar for
different beam energies (mdpa)
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At fixed power, Jc suppression is similar for
different beam energies (mdpa)
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At fixed power, Jc suppression is similar for
different beam energies (mdpa)
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Using |. as a thermometer to measure
the frue Iradiation temperature
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Outline

« Sensitivity analysis with finite-element modeling



Finite-element model setup

) 0 =39+.5mm

Cryogenic grease
k=0.01 W/m-K

TO
Sensor (+In + clamp)
Ty To
Faraday tape (3 cm long)
Ty
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4_______________-

t=20£10 um

YBCO

LaMnO,
epi - MgO
IBAD - MgO

Y20,

|

Ag

Magnetron (2 £0.5 um)
PLD (2.5 pm)

Magnetron (30-50 nm})
e-beam (30-50 nm)
IBAD, e-beam (10 nm)
Magnetron (10 nm)

Magnetron (50 nm)

Magnetron (1 £ 0.5 pm)

Hastelloy C276 g Electropolishing (38 £ 3 um)



Heat source for different beam energies

A 12x10°
x10°

W/m?
A 6.44%x10°
x10°

150 keV ‘ 800 keV

3-mmm FWHM Beam heating profile
from SRIM (IONIZ.TXT + PHONONS.TXT)
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The absolute temperature rise is sensitive to thermal
coupling and the position of the temperature sensor
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We get reasonable between model and
experiments when

* The sensor is close enough to the irradiated area
to detect a temperature rise.

 We determine coupling of sensor to target-
holder (here it’s a free-parameter) .

* Modeling the bridge is not necessary (2D vs 3D).

* Thermal coupling of tape (N-Apiezon grease) to
target-holder is key to reproduce temperatures.



Key findings concerning the
beam-on effect

* | Is suppressed during irradiation but
there is no permanent damage

* lons do not need to interact directly
with the REBCO layer to suppress | i

- The beam-on effect is accompanied /

oy a temperature rise Exfréordino b
* I. vs Tand I, vs Igeam NOve the same o g0
require extraording

func’noncl dependence

» Thermal coupling strongly influences evidence.
the absolute temperature rise

{ +Carl Sagan




@ Backup slides



...In fact, any claim should be
supported by good statistics

800 keV 150 keV

Can temperature alone explain the
suppression of | during irradiatione

evidence.

\

£ Carl Sagan
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FE 800 and 2400 keV

?gns on pos sensor (x) and Apiezon thickness (error bars) ?gns on pos sensor (x) and Apiezon thickness (error bars)
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At fixed energy, the tfemperature rise
IS proportional o beam current

1200 keV proton-beam Initial temperature: 77.3 K
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Beam current is 200 nA¢

Temperature (K)
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Temperature stabllity during Ic
measurements with a 1200 keV beam
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Temperature stabillity during Ic
measurements with a 300 keV beam
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The bridged-tape is mounted directly
on copper with a thin layer of
cryogenic grease (N-Apiezon).

Temperature sensor T3 is pressed
down against the surface of the tape,
in the irradiated area.
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Copper tape

Spring-loaded clamp

Temperature sensor

For this test, the sensor was occluded
from the beam by copper tape. The
tape touches the samples holder, but it
doesn’t contact the sensor directlys




Convection v/

Gold-coated glass
beam-collimator
1/8-in beam aperture

Beam spot

Nylon standoffs

Radiation v/
Joule vV

Sensor-wires and current
leads feedthrough

————— Picoammeter

Re-engineered cryogenic
target maximizes heat
removal

" Conduction v/

316 Stainless-steel
mounting screws

Cryomech AL230 Cold-head
* Base temperature: 15K
* Cooling power: 25W at 20 K
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Can we separate beam-heating from atomic-
displacementse

Silver YBCO Substrate
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1200 keV protons heat
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300 keV protons only heat
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Case 1: 1200 keV protons heat and damage the REBCO
Curve A iIs the reference before imradiation

Voltage [uV]

Temperature [K]

Beam current on
sample [nA]
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-0.2

Current [A]
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Case 1: 1200 keV protons heat and damage the REBCO
Curve B Is measured during irradiation (stable

temperature)

1.2 e G Q

Temperature [K]

Voltage [uV]

S N P — _.@

Beam current on
sample [nA]

0 50 100 150 200
Time [s]

-0.2

Current [A]



Case 1: 1200 keV protons heat and damage the REBCO
Curve C Is measured after irradiation
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Case 1: 1200 keV protons heat and damage the REBCO
Curve D is measured at the matching tfemperature
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Case 3: 300 keV protons only heat the REBCO
Curve A iIs the reference before imradiation

Voltage [uV]

Temperature [K]

Beam current on
sample [nA]

0 50 100 150 200
Time [s]

-0.2

Current [A]
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Case 2: 300 keV protons only heat the REBCO
Curve B Is measured during irradiation (stable

temperature)
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Case 2: 300 keV protons only heat the REBCO
Curve C Is measured after irradiation

Temperature [K]
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Case 2: 300 keV protons only heat the REBCO
Curve D is measured at the matching tfemperature (35
K!)
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