Does the shift to HTS magnets for compact fusion reactors call for the development of a new generation of numerical tools?

L. Bottura, M. Breschi, L. Savoldi

CERN, Geneve, Switzerland

Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" Università di Bologna, Bologna, Italy

Dipartimento Energia "Galileo Ferraris", Politecnico di Torino, Torino, Italy

Outline

Paths to fusion (I)

Paths to fusion (I)

- HTS magnets are in the plans of almost all the MFE projects by public/private companies
- Benefit from what particle physics community has already understood

Paths to high-physics particles: the Muon Collider @CERN

HTS magnets for fusion: a perspective

New paradigms are emerging for HTS magnets:

- Not only Cable-in-Conduit concept (as for LTS magnets)
- Not only internal forced flow cooling (as for LTS magnets)
- Non-insulated tape layouts
- Increasing operating temperatures (\geq 20 K):
 - 1) higher energy efficiency

2) different material properties (higher heat capacity of solids, lower cryogen inventory)

Which are the new challenges that cannot be ignored in the behaviour (\rightarrow modelling \rightarrow design) of the future HTS magnets?

Particle-material parasitic interactions: fusion machines...

Particle-material parasitic interactions: fusion machines...

What do you see are the main challenges for fusion energy after 2030? (38 Reponses, non-reported answers indicate not seen as a problem/don't know)

Thermal (hydraulic?) behavior

- Beyond CICCs: Cooling paths (if any) not necessarily follow the ampere-turn paths (transport current direction not necessarily related to flow pattern)
- For SS, Cu: $c_{p@20K} \sim 10 \times c_{p@4.5K}$
- GHe @ 20K: operation at higher pressure to reduce pumping power, but higher ΔT

$$\dot{q}_{pump} \approx \left(\frac{\dot{q}}{\Delta T}\right)^3 \left\langle\frac{T}{p}\right\rangle^2$$

• Emphasis shifting from cryogens to solids

Mechanical behavior

More complex analysis due to:

- HTS tapes are fragile tension & delamination to be controlled
- HTS tapes are anisotropic → need to compute and check principal stress components – not Von Mises - at the tape level

- Mechanical stresses producing irreversible I_c reduction
 - Tensile longitudinal strain > 0.4 %¹ (600-800 MPa depending on the Hastelloy fraction)
 - Compressive stress in thickness direction > 400 MPa¹
 - Compressive stress in width direction > 100 MPa¹

Tensile stress in thickness direction: 10-100 MPa³

Shear stress > 19 MPa³

Cleavage/Peel stress³ (tensile at tape extremities)<1 MPa³

[B. Bordini et al, EUCAS 2023]

[[]L. Bottura, CHATS 2023]

2) Thermal gradients due to conduction cooling?

1st International Workshop on Irradiation effects on HTS

Electro-magnetic behavior

• Tape/strand level

HTS tapes (in particular ReBCO tapes) exhibit different magnetization current pattern with respect to LTS wires. In LTS wires, filaments magnetization currents in filament coupling \rightarrow 3-50 µm. In 2nd generation HTS tapes the currents flow over the whole tape width (4-12 mm).

Electro-thermal behavior

- HTS tapes/cables have very large enthalpy margin → high stability
- Low quench propagation velocity → More destructive damage in case of quench / complex detection with V measurements
- No practical use of quench heaters (high stability)
- Coil protection is much more challenging than for LTS magnets

Electro-thermal-mechanical behavior

[courtesy of G. Vernassa]

NI coils (beyond the CICC concept) seem a good option for quench management → need for a full 3D analysis of the current (re)distribution, with very long timescales

Stress assessment needed

 → Aggressive program on solenoid model coils ongoing for the MC final cooling magnet will provide high and ultra-high field characterization of the HTS critical surface and quench detection and protection solutions in a new regime₄

1st International Workshop on Irradiation effects on HTS

Particle-material parasitic interactions

HTS magnets in compact fusion reactors

Beyond the tools for LTS magnets?

- Based also on what is already clear for the particle-physics community, the design of new high-field HTS magnets is not just incrementally based on the LTS magnet design → requires additional R&D
- The design approach requires to account for multi-physics aspects:
 - particle-material interaction and mechanical analysis at the tape level (it was mainly at coil level for LTS),
 - electro-magnetic, thermal-hydraulic analysis at coil level (it was at strand/cable level for LTS)
- Maybe the more relevant question becomes then:

Does the shift to HTS magnets for compact fusion reactors call for the development of a new design approach?

