

UKAEA

STEP's plan for understanding REBCO coated conductors in the Fusion Environment

1st International Workshop on Irradiation effects on high temperature superconductors (IREF23) William Iliffe, Simon Chislett-McDonald, Fiona Harden, Kirk Adams, James Tufnail, Chris Grovenor, Susannah Speller, Aidan Reilly, Stuart Wimbush, Ezzat Nasr

and)

25

25

65

30

1.9

63

6

Requirements for Current Carriers in Fusion Magnets $P \propto B^4$ Central

× **UK** Atomic Energy Authority

[7]

Anatomy of a REBCO Coated Conductor

×

UK Atomic Energy

Properties of REBCO CC

 $J_c(B,\theta) = J_c(\tilde{B})$ [12]

 $\tilde{B} = B[\cos^2\theta + \gamma_m^{-2}\sin^2\theta]^{1/2}$

Initial Tape Properties Survey

Q. Can we use of a proxy measurement to predict properties at high B properties?

×

UK Atomic Energy Authority

6

Q. How to emulate neutron irradiation damage with ions?

Advice of G. S. Was *et al.*, "Emulation of reactor irradiation damage using ion beams" *Scr. Mater.*, vol. 88, pp. 33–36, 2014

- Use self-ions, where possible.
- To create **lattice damage**, ensure volume of interest has:
 - as-small-as-possible variation in the damage level
 - as-low-as-possible ion implantation concentration per bombarding ion over the volume of interest.
- To create the required **impurity concentration**:
 - ion energy(ies) needs to be minimised to avoid lattice damage but
 - still sufficient to push impurity ions to the desired location.

XX

What do Fusion Neutrons do to REBCO?

Q. What do fusion spectrum neutrons do to YBCO?

XX

UK Atomic Energy Authority

In both spectra, 10% of the total damage due to 50-90keV Oxygen PKAs

Q. What do monoenergetic oxygen ions do to REBCO? (or any material)

Q. How does one create a uniform ion implantation profile? A. Use a Steinbach et al. energy filter

Implantation Concentration Experiment: Starting P energy: 7 MeV Dose: 7 x 10¹² P ions/cm²

×

Concentration determined by SIMS

Q. What does the experiment look like?

202

×

UK Atomic Energy Authority

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

11

Q. What is the experiment set-up?

Silicon Implantation Experiment (SIMS)

Mi2-factory : All rights reserved

Sample Plate Assembled behind Filter on Beamline

Mi2-factory : All rights reserved

×

UK Atomic Energy Authority

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Q. Any change in T_c ?

- Sample 1 T_{c0} = 88.8 K YBCO
- + Sample 2 T_{c0} = 87.0 K (Gd/Y)BCO

×

Q. Any change in J_c ?

Q. Any change in J_c ?

×

Acknowledgements

@ UKAEA:

- Simon Chislett-MacDonald
- Stuart Wimbush
- Aidan Reilly
- Ezzat Nasr
- Yannik Dieudonne

@ Oxford University

- Susie Speller
- Chris Grovenor
- Kirk Adams (Phd)
- James Tufnail (Phd)

@ HZDR & mi2 Factory

- Constantin Csato
- Shavkat Akhmadaliev
- Florian Krippendorf
- Stefan Illhardt

16

- Beam operators at HZDR

@ STFC-ISIS:

- NILE
 - Chris Frost
 - Carlo Cazzaniga

8

- Maria Kastriotou
- Richard Down
- Robert Major
- ENGIN-X
 - Oleg Kirichek
 - Alexander Jones
 - Joe Kelleher
- @ Surrey Ion Beam Centre:
- Nianhua Peng
- Roger Webb
- Adrian Cansell

& many others!

References

- 1. Wikipedia.com
- 2. http://www2.egr.uh.edu/
- 3. www.advancedconductor.com,
- 4. Fusion4Energy
- 5. iter.org
- 6. clipart.com
- 7. http://ffden-2.phys.uaf.edu/
- 7A. MacManus-Driscoll, Wimbush Nat. Rev. Mats. (2021)
- 7B. Branch Thesis, http://etheses.dur.ac.uk/13186/
- 8. Omitted.
- 9. Molodyk et al. Sci. Rep. 11 1 2021
- 10. lliffe thesis, Oxford & https://htsdb.wimbush.eu/
- 11. Palau et al. SuST 31 3 034004 2018
- 12. Blatteret al. Phys. Rev. Let. 68 6 p.875 1992
- 13. Wimbush et al. SuST **35** 2 (2022) 024004
- 14. Fuger et al. Physica C 468 2008 p.15
- 15. Fischer et al. SuST **31** 4 44006 (2018)
- 16. M Jirsa et al. SuST **36** 075005 (2023)
- 16A. Linden et al. J. Microscopy
- 17. Strickland et al. SuST 36 055001 (2023)
- 18. Iliffe thesis, Oxford University 2021
- 19. Windsor, Morgan Private Comms. 2019 #
- & Federici Nucl. Fus. 57 9 (2017)
- 20. Gilbert et al. J. Nucl. Mat. 216 C (2018)
- 21. Sublet et al. Nucl. Data. Sh. 139 (2017) p. 77
- 22. Yang et al. Phys. Rev. B 42 4 p.2231 (1990)
- 23. Was et al., Scr. Mater., vol. 88, p. 33 (2014)
- 24. Steinbach et al. Micro. Eng. 222 (2020) 111203
- 25. Susie Speller Private Communications
- 26. Zhang et al. SuST **31** (2018) 125006

